DEGLI STUDI

<

= S

2 é 25t Conference on Membrane Computing (CMC 2024)
7 Z

- o

BICOGCA

An Evolutionary Approach to the Design
of Spiking Neural P Circuits

Alberto Leporati and Lorenzo Rovida
University of Milano-Bicocca
Department of Informatics, Systems, and Communication

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

Nice - June 319, 2024

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

e Define SN P circuits, for computing Boolean functions

* Investigate how well evolutionary algorithms discover SN P circuits that compute
a given (possibly partially defined) Boolean function f : {0,1}"” — {0,1}™

Partially defined = defined through some pairs (x,y), with x € {0,1}" and
y € {0,1}™

* Some classification problems can be seen as partially defined Boolean functions

For simplicity,
we start with Genetic Algorithms (GA)

and m =1

 An SN P gate is a spiking neuron containing a subset of the rules
at = a for i € {0,1,...,¢}
where ¢ > 1 is the number of input lines

* An SN P gate computes a Boolean function f : {0,1}* — {0, 1}, by encoding 0 as
no spike, and 1 as one spike

 Differences with respect to standard spiking neurons:
v No delays
v/ Regular expressions have the simple form F = a'
v No (explicit) forgetting rules

v Rule a’ = a (can be avoided, using different encodings)

* The output of a symmetric gate only depends upon the number of 1’s given as input
* A /-input symmetric gate can thus be represented by a subset G C {0,1,...,¢}

* Examples of symmetric gates:
* /-input AND gate: AND = {/}
* /-input OR gate: OR = {1,2,...,/}
* (I-input) NOT gate: NOT = {0}
* (2-input) XOR gate: XOR = {1}
e /-input PARITY gate: PARITY = {1,3,5,...,¢} for £ odd
PARITY = {1,3,5,...,£ —1} for £ even

* The output of a symmetric gate only depends upon the number of 1’s given as input
* A /-input symmetric gate can thus be represented by a subset G C {0,1,...,¢}

* Examples of symmetric gates:
* (-input AND gate: AND = {/}
* /-input OR gate: OR = {1,2,...,/}
* (I-input) NOT gate: NOT = {0}
* (2-input) XOR gate: XOR = {1}
e /-input PARITY gate: PARITY = {1,3,5,...,¢} for £ odd
PARITY = {1,3,5,...,£ —1} for £ even

Also the SN P gates

are symmetric |

 Circuits composed of SN P gates
 Circuits = acyclic graphs (nodes = SN P gates, edges = synapses)
* W.l.o.g., circuits are made of layers of SN P gates

* A n-input/m-output SN P circuit computes a Boolean function f : {0,1}" — {0, 1}™

Evaluation of an SN P circuit:
e Start with a vector x € {0, 1}" encoding the n Boolean input values

* For each layer, compute its output vector by applying the rules in
each SN P gate of the layer

* The output vector of the last layer is the output of the SN P circuit

Observations:

* Each gate takes its input values from the input vector to the layer — which is the
output vector of the previous layer (the input vector, for the first layer)

* There is no point in considering delays in the rules
* Each SN P gate starts with O spikes
mm) |f we want to reuse the circuit, we must « clean it » before evaluation

Otherwise, we assume implicit forgetting rules al — \

Observations:
e The number of functions f : {0,1}"™ — {0,1}"™ is (2m)2n
e Even restricting to m = 1, we have 22" functions
mm) Finding a specific function is like finding a needle in the haystack
Unfeasible already forn =8
* If we are given 2" — k input/output pairs that partially define f : {0,1}" — {0,1},

there are 2" Boolean functions which are coherent with such a partial specification

* If we are given 2™ — k input/output pairs that partially define
f:{0,1}" — {0,1}™ there are (2™)* = 25" Boolean functions
which are coherent with such a partial specification

* Hence, the fewer input/output pairs given, the easier it is to find a Boolean function
consistent with them

* Polynomial-size, constant depth circuits made of symmetric gates are more powerful
than AND/OR/NOT circuits:

Theorem (Furst, Saxe, Sipser, 1985): No polynomial-size, constant depth

AND/OR/NQOT circuit can compute the PARITY function.

RQ1:

RQ2:

How well (or poorly) do evolutionary algorithms work, in finding
the SN P circuits that compute a given Boolean function/solve a
given classification task?

How does the quality of the solutions found vary depending on
some characteristics of the Boolean function (for example, non-

linearity)?

Non-linear Boolean functions are
interesting for cryptographic applications

e Genetic Algorithms (GA) are meta-heuristic optimization algorithms
* They solve constrained and unconstrained optimization problems

* A population of candidate solutions (individuals) is evolved through generations,
driven by a fitness function

* Operators to be defined:

* Selection Parameters to be defined:

* Crossover * Population size

* Probability of crossover

* Probability of mutation

 Number of generations / halting condition

* Mutation

e Fitness function: Given a list of pairs (X1,¥1), - - -, (Xk, Y&) that partially define a
function f : {0,1}"™ — {0, 1}, the fitness of a circuit ¢ is:

k
fitness(c, f) =1 — ¢ (2:1 c(x;) # Yz‘)

* Selection operator: fitness proportionate selection
m=) The fittest individuals are chosen for breeding
* Elitism: 10% of the best individuals are copied to the next generation

* Halting condition: fixed number of generations

* Crossover: inspired by one-point crossover, in which parent circuits are cut before a
(randomly chosen) layer

 Two new individuals are produced by taking the first (resp., second) part of the first
circuit, and the second (resp., first) part of the second circuit

* The fitness of the two children is evaluated, and only the best one is kept

Layer 1

Genetic Algoritms

Layer n

Layer n 4+ 1

Output

* Crossover operator:

Layer 1

Layer m — 1

* Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in
the parent circuits, have a different number of neurons

Same number of neurons Red edges are invalid =
= no cleaning cleaning required

* Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in
the parent circuits, have a different number of neurons

Cleaning means:
* Removing invalid edges

* Removing gates whose output is
not used in the next layer

 Removing empty layers

Red edges are invalid =
cleaning required

Several kinds of mutation:

* Adding a new rule to randomly chosen SN P gates

* Removing a rule to randomly chosen SN P gates

* Adding a new input line to randomly chosen SN P gates

 Removing an input line to randomly chosen SN P gates (requires cleaning)
* Adding a new gate in a randomly chosen layer (plus random edges)

 Removing a gate in a randomly chosen layer (requires cleaning)

Genetic Algoritms

More drastic mutations:

Adding a new layer to the circuit Removing a layer from the circuit

(plus random edges) (requires cleaning)

Genetic Algoritms

e Pseudocode:

A

Igorithm 3 Genetic Algorithm for finding a SN P circuit that computes a

given Boolean function f

13:
14:
15:
16:
17:
18:

19

: procedure EVOLVE(f)
> f is (possibly partially) defined by a list of pairs (x,y) € {0,1}" x {0,1}™
P < initial population of randomly generated SN P circuits
F1T < fitness values of each circuit in P
save the maximum and average fitness values in a list
while stopping criterion is not verified do
> P’ and FIT’ constitute the new generation
P’ < best p percent circuits from P > p typically is in [0, 10]
FIT’ < fitness values of circuits in P’
for i + 1 to (1 —p/100) - |P| do
parentl, parent2 <— FITNESSPROPORTIONATESELECTION(P)
child + CROSSOVER(parentl, parent2) > only the fittest among

the two children is kept
add MuTtaTION(child) to P’
add the fitness of child to Fi1’
end for
save the maximum and average fitness values

P+ P > substitute P with P’
end while

: end procedure

The following mutation probabilities have been experimentally found, and have been
used in all experiments:

Add Remove Add Remove Add Remove Random

layer layer neuron neuron rule rule input lines

Probability | 0.008 0.080 0.030 0.200 0.005 0.080 0.010

For every simulation, the best and the average fitness of individuals were recorded

5 inputs, 1 output
* Function entirely specified (all input/output pairs provided)

Population size |[P| € {20, 30, 40}

Minimum number of intermediate layers in randomly generated circuits: /,,, € {1,2}

Maximum number of intermediate layers in randomly generated circuits:
Inax € 1 +1}

min? lmin

* Stopping criterion: 200 generations

e 15 simulations == Computed the average between the best fitness
in each simulation

First experiment: PARITY (XOR) function

Mean Successful

Population Min layers Max layer , _ ,
Fitness simulations

40 3 4 0.93125 2/15
40 1 2 0.9125 1/15
30 3 3 0.9125 2/15
30 3 4 0.9125 2/15
40 2 3 0.910417 1/15
20 3 4 0.908333 5/15
30 2 3 0.908333 4/15

20 1 1 0.879167 1/15

8 inputs, 1 output

Function entirely specified (all input/output pairs provided)

Population size |P| € {60, 80, 100}

Minimum number of intermediate layers in randomly generated circuits: /,,, € {1,2,3}

Maximum number of intermediate layers in randomly generated circuits:
lmax € {lmim lmin+ 1}

Stopping criterion: 500 generations

e 15 simulations for each set of parameters

Second experiment: PARITY (XOR) function

Population Min layers Max layer Mean S.uccess'ful
Fitness simulations
100 2 2 0.889844 0/15
100 3 3 0.835417 0/15
60 3 4 0.835156 1/15
80 3 3 0.827604 1/15
60 3 3 0.819792 0/15
60 1 2 0.811979 0/15
100 1 1 0.810156 0/15
60 1 1 0.765104 0/15

Grid search over the following mutation probability values:

Probability of adding a new layer at each iteration € {0.005, 0.01, 0.02}

Probability of adding a new neuron in a random layer € {0.03, 0.05}

Probability of removing a neuron from a random layer € {0.05, 0.15, 0.25}

15 simulations for each set of parameters

Second experiment: PARITY (XOR) function

Add layer ~ Add neuron Remove neuron | Average Successful
probability probability = probability Fitness simulations
0.01 0.05 0.05 0.9125 2/15

0.01 0.05 0.25 0.8930 0/15

0.01 0.03 0.15 0.8883 0/15

0.01 0.03 0.25 0.8628 0/15

0.01 0.05 0.15 0.8529 1/15

0.02 0.05 0.05 0.8487 0/15

0.005 0.03 0.05 0.8482 0/15

0.02 0.03 0.05 0.8016 0/15

: ., o N
Second experiment: PARITY (XOR) function \
Growth of fitness value for the best 15 circuits, using the best set of parameters: '

1 A
2 09 rfj
S
% 0.8
=

0.7

5
>

50 100 150 200 250 300 350 400 450 500

Iteration

We considered two Boolean functions expressed in the Algebraic Normal Form (ANF):

fi(x1,...,25) =1D 22D (21 Ax2) D (21 Axg) D (1 Ax5) D (T2 A T3) D
(x3Ax5) D (1 Ao Ax3) D (1 Axa Ax5) D (21 Ax3 ATy) D
(1 ANxz3 Ax5) D (21 Axg Ax5) D (23 ATy AN T5) D

(1 A3 AXg ANx5) B (T2 ATz Axg A T5) D

(

1 ANxo ANx3 ATy A T5)

fo(x1,...,25) =21 D (21 Axg) B (1 ANX5) D (2 Axq) D (3 A T5) D
TaANx5) D (T Ao AN23) ® (1 Axa Axy) ® (1 A2 A T5) D
Lo ANX3 Nxg) D (X2 ANx3 AN T5) D (1 Ao Ax3 AXy) D

1 ANX3 ATy ANT5) D (T2 A3 Ay A T5) D

T1 AN Xy ANx3 ATy A T5)

5 inputs, 1 output

Function partially specified (80% input/output pairs provided)

Population size |P| € {75, 100, 125}

Minimum number of intermediate layers in randomly generated circuits: /,,, € {1,2,3}

Maximum number of intermediate layers in randomly generated circuits:
lmax € {lmim lmin+ 1}

Stopping criterion: 500 generations

e 20 simulations for each set of parameters

Third experiment: ANF Boolean functions

IPput set Population Min layers Max layer Mean S.uccess.ful

s1ze Fitness | simulations
| 100 9 2 0.91818 | 3/20
ga;}:gl) 125 2 2 0.91591 | 1/20
100 9 3 0.91136 | 1/20
f1 195 1 1 0.89531 | 1/20
gazr;l;;k)ete 125 3 3 0.89375 | 0/20
100 1 1 0.88906 | 0/20
| 100 3 4 0.92500 | 1/20
f;a;/t;aél) 100 9 3 0.925 | 1/20
195 1 1 0.92273 | 1/20
f2 195 9 3 0.86406 | 0/20
8021;1??21?6 195 3 3 0.86406 | 0/20
195 1 1 0.86094 | 0/20

Third experiment: ANF Boolean functions

Grid search over the following mutation probability values:

Add layer Add neuron Remove neuron | Average Successful
probability probability @ probability Fitness simulations
0.001 0.01 0.25 0.90469 0/30

f1 | 0.003 0.01 0.25 0.90156 0/30
0.003 0.03 0.15 0.89687 1/30
0.003 0.03 0.05 0.87187 0/20

f2 | 0.005 0.01 0.05 0.86875 0/20
0.003 0.03 0.25 0.8625 0/20

Perform further experiments, on more complicated Boolean functions
Implementing different crossover operations, and stopping criteria

Implementing other evolutionary algorithms =

* Grammatical Evolution, Evolution Strategies, Memetic Algorithms

* Augmenting structures?

Perform an ablation study ,ro DO---

Explore the fitness landscape

* Apply evolutionary techniques to standard SN P systems
(and their extensions)

* Compare SN P circuits with other kinds of Boolean circuits

Thank you
for your attention !

Alberto Leporati and Lorenzo Rovida
alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

