
An Evolutionary Approach to the Design
of Spiking Neural P Circuits

Alberto Leporati and Lorenzo Rovida
University of Milano-Bicocca

Department of Informatics, Systems, and Communication
alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

25th Conference on Membrane Computing (CMC 2024)

Nice – June 3rd, 2024

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

Our goals

• Define SN P circuits, for computing Boolean functions

• Investigate how well evolutionary algorithms discover SN P circuits that compute
a given (possibly partially defined) Boolean function

 Partially defined = defined through some pairs , with and

• Some classification problems can be seen as partially defined Boolean functions

2

For simplicity,
we start with Genetic Algorithms (GA)

and

f : {0, 1}n → {0, 1}m

(x,y) x ∈ {0, 1}n

y ∈ {0, 1}m

m = 1

SN P gates
• An SN P gate is a spiking neuron containing a subset of the rules

 where is the number of input lines

• An SN P gate computes a Boolean function , by encoding 0 as
no spike, and 1 as one spike

3

ai → a for i ∈ {0, 1, . . . , ℓ}

ℓ ≥ 1

f : {0, 1}ℓ → {0, 1}

• Differences with respect to standard spiking neurons:
ü No delays
ü Regular expressions have the simple form
ü No (explicit) forgetting rules
ü Rule (can be avoided, using different encodings)

E = a
i

a
0
→ a

Symmetric gates

• The output of a symmetric gate only depends upon the number of 1’s given as input

• A -input symmetric gate can thus be represented by a subset

• Examples of symmetric gates:
• -input AND gate:
• -input OR gate:
• (1-input) NOT gate:
• (2-input) XOR gate:
• -input PARITY gate:

4

ℓ

ℓ

G ⊆ {0, 1, . . . , ℓ}

AND = {ℓ}

ℓ OR = {1, 2, . . . , ℓ}

NOT = {0}

XOR = {1}

ℓ PARITY = {1, 3, 5, . . . , ℓ} for ℓ odd

PARITY = {1, 3, 5, . . . , ℓ− 1} for ℓ even

Symmetric gates

• The output of a symmetric gate only depends upon the number of 1’s given as input

• A -input symmetric gate can thus be represented by a subset

• Examples of symmetric gates:
• -input AND gate:
• -input OR gate:
• (1-input) NOT gate:
• (2-input) XOR gate:
• -input PARITY gate:

5

ℓ

ℓ

G ⊆ {0, 1, . . . , ℓ}

AND = {ℓ}

ℓ OR = {1, 2, . . . , ℓ}

NOT = {0}

XOR = {1}

ℓ PARITY = {1, 3, 5, . . . , ℓ} for ℓ odd

PARITY = {1, 3, 5, . . . , ℓ− 1} for ℓ even

Also the SN P gates

are symmetric !

SN P circuits

• Circuits composed of SN P gates

• Circuits = acyclic graphs (nodes = SN P gates, edges = synapses)

• W.l.o.g., circuits are made of layers of SN P gates

• A n-input/m-output SN P circuit computes a Boolean function

6

f : {0, 1}n → {0, 1}m

Evaluation of an SN P circuit:

• Start with a vector encoding the n Boolean input values

• For each layer, compute its output vector by applying the rules in
each SN P gate of the layer

• The output vector of the last layer is the output of the SN P circuit

x ∈ {0, 1}n

SN P circuits

Observations:

• Each gate takes its input values from the input vector to the layer – which is the
output vector of the previous layer (the input vector, for the first layer)

• There is no point in considering delays in the rules

• Each SN P gate starts with 0 spikes

 If we want to reuse the circuit, we must « clean it » before evaluation

 Otherwise, we assume implicit forgetting rules

7

a
i
→ λ

Boolean functions

Observations:

• The number of functions is

• Even restricting to m = 1, we have functions

 Finding a specific function is like finding a needle in the haystack

 Unfeasible already for n = 8

• If we are given input/output pairs that partially define ,
there are Boolean functions which are coherent with such a partial specification

8

f : {0, 1}n → {0, 1}m (2m)2
n

2
2
n

2
n
− k

2
k

f : {0, 1}n → {0, 1}

2
n
− k

f : {0, 1}n → {0, 1}m
• If we are given input/output pairs that partially define

 there are Boolean functions
which are coherent with such a partial specification

(2m)k = 2k·m

Boolean functions

• Hence, the fewer input/output pairs given, the easier it is to find a Boolean function
consistent with them

• Polynomial-size, constant depth circuits made of symmetric gates are more powerful
than AND/OR/NOT circuits:

9

Theorem (Furst, Saxe, Sipser, 1985): No polynomial-size, constant depth

AND/OR/NOT circuit can compute the PARITY function.

Research questions

RQ1:

10

How well (or poorly) do evolutionary algorithms work, in finding
the SN P circuits that compute a given Boolean function/solve a
given classification task?

RQ2: How does the quality of the solutions found vary depending on
some characteristics of the Boolean function (for example, non-
linearity)?

Non-linear Boolean functions are
interesting for cryptographic applications

Genetic Algoritms

• Genetic Algorithms (GA) are meta-heuristic optimization algorithms

• They solve constrained and unconstrained optimization problems

• A population of candidate solutions (individuals) is evolved through generations,
driven by a fitness function

• Operators to be defined:
• Selection
• Crossover
• Mutation

11

Parameters to be defined:
• Population size
• Probability of crossover
• Probability of mutation
• Number of generations / halting condition

Genetic Algoritms

• Fitness function: Given a list of pairs that partially define a
function , the fitness of a circuit c is:

• Selection operator: fitness proportionate selection

 The fittest individuals are chosen for breeding

• Elitism: 10% of the best individuals are copied to the next generation

• Halting condition: fixed number of generations

12

fitness(c, f) = 1− 1

k

(

k
∑

i=1

c(xi) ̸= yi

)

(x1,y1), . . . , (xk,yk)

f : {0, 1}n → {0, 1}m

Genetic Algoritms

• Crossover: inspired by one-point crossover, in which parent circuits are cut before a
(randomly chosen) layer

• Two new individuals are produced by taking the first (resp., second) part of the first
circuit, and the second (resp., first) part of the second circuit

• The fitness of the two children is evaluated, and only the best one is kept

13

Genetic Algoritms

14

• Crossover operator:

Genetic Algoritms

• Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in
the parent circuits, have a different number of neurons

15

Same number of neurons
= no cleaning

Red edges are invalid =
cleaning required

Genetic Algoritms

• Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in
the parent circuits, have a different number of neurons

16

Cleaning means:

• Removing invalid edges

• Removing gates whose output is
not used in the next layer

• Removing empty layers

Red edges are invalid =
cleaning required

Genetic Algoritms

Several kinds of mutation:

• Adding a new rule to randomly chosen SN P gates

• Removing a rule to randomly chosen SN P gates

• Adding a new input line to randomly chosen SN P gates

• Removing an input line to randomly chosen SN P gates (requires cleaning)

• Adding a new gate in a randomly chosen layer (plus random edges)

• Removing a gate in a randomly chosen layer (requires cleaning)

17

Genetic Algoritms

More drastic mutations:

18

Adding a new layer to the circuit Removing a layer from the circuit

(plus random edges) (requires cleaning)

Genetic Algoritms

19

• Pseudocode:

Experiments

The following mutation probabilities have been experimentally found, and have been
used in all experiments:

20

For every simulation, the best and the average fitness of individuals were recorded

First experiment: PARITY (XOR) function

• 5 inputs, 1 output

• Function entirely specified (all input/output pairs provided)

• Population size |P| ∈ {20, 30, 40}

• Minimum number of intermediate layers in randomly generated circuits: lmin ∈ {1,2}

• Maximum number of intermediate layers in randomly generated circuits:
lmax ∈ {lmin, lmin + 1}

• Stopping criterion: 200 generations

21

• 15 simulations Computed the average between the best fitness
in each simulation

First experiment: PARITY (XOR) function

22

Second experiment: PARITY (XOR) function

• 8 inputs, 1 output

• Function entirely specified (all input/output pairs provided)

• Population size |P| ∈ {60, 80, 100}

• Minimum number of intermediate layers in randomly generated circuits: lmin ∈ {1,2,3}

• Maximum number of intermediate layers in randomly generated circuits:
lmax ∈ {lmin, lmin + 1}

• Stopping criterion: 500 generations

23

• 15 simulations for each set of parameters

Second experiment: PARITY (XOR) function

24

Second experiment: PARITY (XOR) function

Grid search over the following mutation probability values:

• Probability of adding a new layer at each iteration ∈ {0.005, 0.01, 0.02}

• Probability of adding a new neuron in a random layer ∈ {0.03, 0.05}

• Probability of removing a neuron from a random layer ∈ {0.05, 0.15, 0.25}

• 15 simulations for each set of parameters

25

Second experiment: PARITY (XOR) function

26

Second experiment: PARITY (XOR) function

Growth of fitness value for the best 15 circuits, using the best set of parameters:

27

Third experiment: ANF Boolean functions

We considered two Boolean functions expressed in the Algebraic Normal Form (ANF):

28

Third experiment: ANF Boolean functions

• 5 inputs, 1 output

• Function partially specified (80% input/output pairs provided)

• Population size |P| ∈ {75, 100, 125}

• Minimum number of intermediate layers in randomly generated circuits: lmin ∈ {1,2,3}

• Maximum number of intermediate layers in randomly generated circuits:
lmax ∈ {lmin, lmin + 1}

• Stopping criterion: 500 generations

29

• 20 simulations for each set of parameters

Third experiment: ANF Boolean functions

30

Third experiment: ANF Boolean functions

Grid search over the following mutation probability values:

31

Future work
• Perform further experiments, on more complicated Boolean functions

• Implementing different crossover operations, and stopping criteria

• Implementing other evolutionary algorithms
• Grammatical Evolution, Evolution Strategies, Memetic Algorithms
• Augmenting structures?

• Perform an ablation study

• Explore the fitness landscape

32

• Apply evolutionary techniques to standard SN P systems
(and their extensions)

• Compare SN P circuits with other kinds of Boolean circuits

Thank you
for your attention !

Alberto Leporati and Lorenzo Rovida
alberto.leporati@unimib.it, lorenzo.rovida@unimib.it

mailto:alberto.leporati@unimib.it
mailto:lorenzo.rovida@unimib.it

